
International Doctoral Course "Stable Isotopes in Forest Ecosystem Research"

GC-IRMS and LC-IRMS: principles

- GC separates organic molecule in gas phase
- Volatilization of dissolved molecules by a Flame Ionization Detector.
- Chemical conversion to CO₂ in gas phase (oxi./red)
- IRMS determines relative abundance of δ¹³C in CO₂

- LC separates organic molecule in liquid phase
- Chemical conversion to CO₂ in liquid phase (chemical oxi.)
- Degassing unit for CO₂ separation from the liquid phase by He
- IRMS determines relative abundance of δ¹³C in CO₂

"Stable Isotopes in Forest Ecosystem Research"

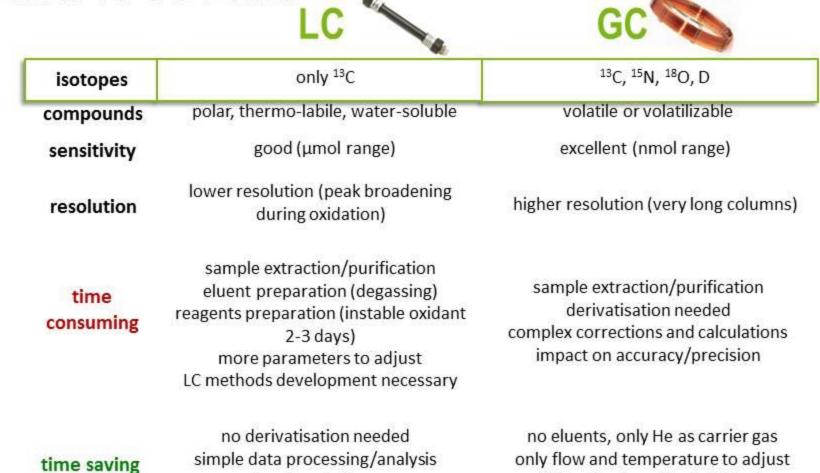
GC-IRMS and LC-IRMS: principles

- Volatilizable compounds
- Volatility reduces with functional groups:
 - ✓ COOH (e.g. fatty acids, amino acids)
 - ✓ OH (e.g. alcohols, sugars)
 - ✓ NH₂ (e.g. amino acids, amino sugars)
- Derivatisations needed
 - Blocking functional groups with apolar groups
 - ✓ Esterification (adding a group –COOR)
 - ✓ Silylation (adding a group –SiMe₃)
 - ✓ Acetylation (adding e group –CO-CH₃)

- Polar and thermo-labile compounds
 - ✓ amino acids
 - ✓ peptides
 - ✓ sugars/amino sugars
 - ✓ nucleotides
 - ✓ steroids
- Less sensitive and requires higher concentrations of compounds
- Requires inorganic (or pure water) eluents
- Requires degassing of solutions (water and reagents)

"Stable Isotopes in Forest Ecosystem Research"

GC methods well established


pollutant (organic solvent, e.g DCM)

LC-IRMS vs GC-IRMS

environment

reduced analysis error

safe (only organic buffer)